ASCII2MathML-SVG: The Moody Diagram Calculator

		
agraph
setGraphType(LogaritmicLogaritmic);
setViewport(750,550,70); 
setGraphArea(2,10,-3,-1);
setGridandTicks(1,1,1,1);
setLabelsandTitle(BottomLeft,"Reynolds number","Friction coefficient","The Moody Diagram");
initPicture();
drawGraphArea();
fill="none";
strokewidth="2";
stroke="blue";
plot("SwameeJain(pow(10,-8),1,x)",log(2320),10);
plot("SwameeJain(pow(10,-7),1,x)",log(2320),10);
plot("SwameeJain(pow(10,-6),1,x)",log(2320),10);
plot("SwameeJain(pow(10,-5),1,x)",log(2320),10);
plot("SwameeJain(pow(10,-4),1,x)",log(2320),10);
plot("SwameeJain(pow(10,-3),1,x)",log(2320),10);
plot("SwameeJain(5*pow(10,-3),1,x)",log(2320),10);
stroke="green";
plot("SwameeJain(pow(10,-2),1,x)",log(2320),10);
plot("SwameeJain(2*pow(10,-2),1,x)",log(2320),10);
plot("SwameeJain(3*pow(10,-2),1,x)",log(2320),10);
plot("SwameeJain(4*pow(10,-2),1,x)",log(2320),10);
plot("SwameeJain(5*pow(10,-2),1,x)",log(2320),10);
stroke="red";
plot("64/x",2,log(2320));
plot("SwameeJain(0.0,1,x)",log(2320),10);
text([10.05,log(SwameeJain(pow(10,-8),1,pow(10,10)))],"`epsilon=10^-8`","middleright","espsilon_-8");
text([10.05,log(SwameeJain(pow(10,-7),1,pow(10,10)))],"`epsilon=10^-7`","middleright","espsilon_-7");
text([10.05,log(SwameeJain(pow(10,-6),1,pow(10,10)))],"`epsilon=10^-6`","middleright","espsilon_-6");
text([10.05,log(SwameeJain(pow(10,-5),1,pow(10,10)))],"`epsilon=10^-5`","middleright","espsilon_-5");
text([10.05,log(SwameeJain(pow(10,-4),1,pow(10,10)))],"`epsilon=10^-4`","middleright","espsilon_-4");
text([10.05,log(SwameeJain(pow(10,-3),1,pow(10,10)))],"`epsilon=10^-3`","middleright","espsilon_-3");
text([10.05,log(SwameeJain(5*pow(10,-3),1,pow(10,10)))],"`5*10^-3`","middleright","espsilon_-53");
text([10.05,log(SwameeJain(pow(10,-2),1,pow(10,10)))],"`epsilon=10^-2`","middleright","espsilon_-2");
text([10.05,log(SwameeJain(5*pow(10,-2),1,pow(10,10)))],"`5*10^-2`","middleright","espsilon_-52");
text([10.05,log(SwameeJain(pow(10,-1),1,pow(10,10)))],"`epsilon=10^-1`","middleright","espsilon_-1");
text([2.1,-2.5],"Laminar","rightmiddle","laminar");
text([6,-2.5],"Turbulent","rightmiddle","turbulent");
createGradient("5%","#EEEEEE","95%","#AAAAAA","MyGradient");
setGradient("MyGradient",0.3);
axesBorder("2","black");
createGradient("5%","#DDDDDD","95%","#AAAAAA","MyGradient2");
setGradient("MyGradient2",0.3);
viewportBorder("3","black"); 
endagraph
Pointer coordinates: (x,y) Click coordinates: (x,y)
Input:  
Roughness d: m
Hydraulic diameter Dh: m
Velocity v: m/sec
Viscosity n: m2/sec
Output:  
Reynolds number: -
Friction coefficient l: -
   

Press the left mouse button and move over the Moody Diagram, see the transition between laminar and turbulent flow.

Digitised points:
 

Equations involved in the calculations

Hydraulic diameter `Dhr` and `Rhr` for river or channel flow or TSHD flow,

or `Dhp` and `Rhp` for pipe flow

Remark: In civil engineering the hydraulic radius `R_h` is `1/4` of the hydraulic diameter `D_h` because this way it matches the depth `H` of a river or channel, while in mechanical engineering it is `1/2` the hydraulic diameter `D_h`, matching the radius `R` of a pipe.

Relative roughness `epsilon=d/D_h`

Reynolds: `Reynolds` for calculating the horizontal axis

Swamee Jain: `SwameeJain` for calculating the friction coefficient `lambda`

T

[`dgr`C] 

Viscosity

[m2/sec]

10 1.308 x 10−6
20 1.003 x 10−6
30 7.978 x 10−7
40 6.531 x 10−7
50 5.471 x 10−7
60 4.668 x 10−7
70 4.044 x 10−7
80 3.550 x 10−7
90 3.150 x 10−7
100 2.822 x 10−7
 
The original ASCIIMathML and ASCIIsvg scripts have been developed by by Peter Jipsen, Chapman University (jipsen@chapman.edu)
LaTeXMathML has been developed by Douglas Woodall (and extended by Jeff Knisley), based on ASCIIMathML
Image fallback scripts have been developed by David Lippman based on MimeTex and MathTex of John Forkosh.
The version of ASCIIMathML used on this website, is a modified and extended version based on version 2.1 of Peter Jipsen, the new SVG library has been developed by Dr.ir. S.A. Miedema
Other sources: An ASCIIsvg manual by Robert Fant.  An ASCIIsvg manual by Peter Jipsen. An ASCIIMathML manual by James Gray.

Plugins and fonts required (depending on your browser): MIT MathML font packages, MathPlayer, Adobe SVGviewer
Look at: http://www.w3.org/TR/SVG11/ for detailed information about SVG.
Look at: http://www.w3.org/Math/ for detailed information about MathML

Copyright © Dr.ir. S.A. Miedema, Delft University of Technology, Faculty of Mechanical Engineering, Marine Technology & Materials Science
Department of Marine & Transport Technology, The Chair of Dredging Engineering
mulberry outlet coach outlet burberry outlet coach factory outlet mulberry outlet coach outlet UGG Pas Cher cheap oakley sunglasses cheap nfl jerseys cheap oakleys wholesale nfl jerseys coach outlet canada black friday coach ugg boots on sale cheap uggs gucci outlet oakley outlet coach outlet coach outlet online