Designing Dredging Equipment
OE4671/ WB3408

Prof.ir. W.J. Vlasblm

12 September 2006

Section Dredging engineering
Purpose of the lecture

• To design a particular type of dredger on basis of (simple) dredging processes.
• Such a method can be used for many design problems!
Course development

• Introduction lecture in the 5th quarter

• Assignment for one or two persons can be done the whole year around.

• Total 4 credits (ECT)
Assignments for hydraulic dredgers

• Trailing Suction Hopper Dredger (TSHD) for large reclamation works
• Multi Purpose TSHD for maintenance and beach nourishments
• Gravel Trailing Suction Hopper Dredgers
• Cutter Suction Dredger
• Environmental Dredger
• Plain Suction Dredger
• Dustpan Dredger
Assignments for mechanical dredgers

• The backhoe dredger
• The grab dredger
• Bucket ladder dredger
Cutter Dredger
Plain Suction Dredger
Plain Suction Dredger

DSC Dredge During Construction Phase for FRI Virginia-Based Facility
Dustpan Dredger
The Environmental Dredger
The Backhoe Dredger
The Grab or Clamshell Dredger
Bucket Ladder Dredger
Work Load

The assignment for
- the TSHD, CSD are for 2 students
- The other ones are for 1 student
Designing Dredging Equipment

Productions

Dredging installation

Propulsion (optional)

Prime movers (main engines)

General layout
Design basis = yearly output in m^3 (production)

- To be translated to the significant design parameters.
- Depends on the scale (or cycle) of the process.
- Large scales
 - Hopper dredger \Rightarrow volume and load per trip
 - Barge unloader dredger \Rightarrow Barge volume
 - Backhoe dredger \Rightarrow the volume per cycle
- Continuous operating dredgers or equipment m^3/week or m^3/month
Design Basis (2)

• Small scale:
 • “Wall” speed of a breach mm/s
 • Pump output in m³/s
 • Cutter head Excavated output in m³/s
 • Bucket ladder dredger Buckets/min
 • Backhoe dredger Bucket volume/cycle
 • Grab dredger Grab volume/cycle
Problems during translation

• Change of volumes
• In many cases the contractor is paid in volumes removed, but many processes are based on mass.
• Working hours per week (168 or 84 or 40)
• Down time
• Overhaul & Maintenance
• Bunkering, crew changes, etc
• Delays due to weather conditions
Concentration (1/3)

• By volume
 \[C_v = \frac{\text{Volume sand}}{\text{Mixture volume}} = \frac{U_s}{U_m} \]

• By weight
 \[C_w = \frac{\text{Sand mass}}{\text{Mixture mass}} = \frac{\rho_s U_s}{\rho_m U_m} = \frac{\rho_s}{\rho_m} C_v \]

• Delivered
 \[C_{vd} = \frac{U_s / \text{time}}{U_m / \text{time}} = \frac{Q_s}{Q_m} \]
Concentrations (2/3)

• Ratio between C_{vd} & C_v follows from:

$$C_{vd} = \frac{Q_s}{Q_m} = \frac{v_s A C_v}{v_m A} \Rightarrow \frac{C_{vd}}{C_v} = \frac{v_s}{v_m}$$

• Ratio between C_w & C_v

$$C_w = \frac{\rho_s}{\rho_m} C_v \Rightarrow \frac{C_w}{C_v} = \frac{\rho_s}{\rho_m}$$
Concentrations (2/3)

\[
\frac{C_{vd}}{C_v} = \frac{v_s}{v_m}
\]

- In horizontal transport \(v_s < v_m \rightarrow \text{slip} \)
- In vertical transport \(v_s \approx v_m \) the difference is the settling velocity
Mixture Densities \[\iff\] Volumetric Concentration

- \(\text{Mass}_{\text{mixture}} = \text{mass}_{\text{liquid}} + \text{mass}_{\text{solids}} \)

\[
\rho_m U_m = \rho_f U_f + \rho_s U_s \quad \text{with} \quad C_v = \frac{U_s}{U_m}
\]

\[
\rho_m = \rho_f (1 - C_v) + \rho_s C_v
\]

\[
C_v = \frac{\rho_m - \rho_f}{\rho_s - \rho_f}
\]

"Note U is volume"
Volume changes

• When removing soil the insitu density will change; mostly from a dense to a loose state
 ⇒ Increase in porosity; f.i. From 40 to 50%
 ⇒ Porosity n is ratio pore volume over total volume
 ⇒ Condition: \(V_1(1-n_1)=V_2(1-n_2) \)

Examples:
 ⇒ Sand; \(n_1=0.4 \) and \(n_2=0.5 \) gives \(V_2/V_1=0.6/0.5=1.2 \)
 ⇒ Rock; \(n_1=0 \) and \(n_2=0.4 \) gives \(V_2/V_1=1/0.6=1.7 \)
Losses

Every dredging process can have losses, called spillage:

- More excavated than picked up by the flow or bucket
- Non removed loads in TSHD’s, particular when the loads is pumped ashore or rainbowed.
- Unstable slopes after dredging (plain suction dredgers)
- In accurate placing of material
- Losses due to current and waves
Excavating production

- Mechanically
- Hydraulically
Mechanical excavation
Specific Energy Concept (SPE)

Energy required to excavated 1m3 of soil
Dimension is Joule/m3

or per unit of time J/s/m3/s=W/m3/s,

That equals a power over production

\[SPE = \frac{power}{production} \Rightarrow power = SPE \times production \]
Mechanical Excavating
Mechanical Excavating
Mechanical Excavating
Hydraulic excavation
Momentum of flow

A reasonable assumption is that the jet-production is linear with the total momentum flux of the jet system independent of the trail speed.

\[Q_{sand} = (1 - n) Q_{dredged} \]

\[M_{sand} = Q_{sand} \rho_{sand} = (1 - n) Q_{dredged} \rho_{sand} \]

\[M_{sand} = \alpha \cdot I = \alpha \rho_w \cdot Qu = \alpha \rho_w \cdot Q \sqrt{\frac{2p}{\rho_w}} = \alpha \sqrt{2\rho_w} \frac{P_{\text{power}}}{\sqrt{p_{\text{pressure}}}} \]
Excavation by dragheads is hydraulically
Water injection dredger
Transport production

- Mechanically: ship/barge conveyor
- Hydraulically: pipeline
Mechanical transport

- Trailing suction hopper dredger
- Barges

- Be aware of the effective load, because the unloading is not always 100%
Transport by barges
By Trailing Suction Hopper Dredgers
Hydraulic transport
Pump-pipeline system

Flow [m3/s]

Pressure [kPa]

mixture

water

mixture

water

1

2

3

4

 TU Delft
Hydraulic transport
Methods of deposing (1/2)
Methods of deposing (2/2)
disposing
Rainbowing
Mechanical Assistance
Design examples
Example 1

Design a Trailing Suction Hopper Dredger that can dredge yearly 5 Mm3 coarse sand & gravel at 75 nautical miles from a port.

The dredger works 5 days at 24 hours
Bunkers will be taken in the weekend
Overhaul 2 weeks
Weather delays 3 weeks
Workability 95%
Christmas 1 week
Designing TSHD

Main dimensions

Dredging installation

Propulsion

General layout
Main dimensions

- Yearly production
- Working hours
- Soil type
- Delays
- Overflow losses
- Efficiency

Hopper capacity and Payload

- Dead weight
- Displacement
- Bock coefficient

Main dimensions ship LxBxT
Cycle time

First estimate of dredge cycle:
Sailing to the dredging area: \(\frac{75}{15} = 3.0 \text{ hr} \)
Loading \(= 1.5 \)
Sailing to the unloading area: \(= 3.0 \)
Unloading \(= 1.5 \)
Total \(= 9.0 \text{ hr} \)
Required load/ trip

Available hours: \((52-6) \times 5 \times 24 = 5520\)
Effective hours: \(0.95 \times 5520 = 5244\)
Number of trips per year: \(5244/9 = 582\)
Required volume per trip: \(5,000,000/582 = 8591 \text{ m}^3\)
In coarse sand & gravel max. filling hopper is 90%
Required hopper volume: \(8591/0.9 = 9546 \Rightarrow 10000 \text{ m}^3\)
Density of sand & gravel in hopper 2000 kg/m³
PayLoad is: \(8600 \times 2 = 17200 \text{ ton}\)
Hopper density: load/volume=1.72 t/m³.
Deadweight & lightweight

Crew and their possessions, consumer goods, spare parts, and ballast water and payload.

Deadweight = 1.05 x payload

\[y = -3 \times 10^{-6}x^2 + 0.5586x \]

\[R^2 = 0.9607 \]
Displacement

\[y = 0.6827x \quad R^2 = 0.9929 \]

\[y = 0.3173x \quad R^2 = 0.9622 \]
Block coefficient

\[C_b = \frac{\nabla}{LBT} \]
Ship Numbers

Ships Numbers

Year of Construction

L/B, B/H, B/T

L/B
B/H
B/T
Dredging installation

Required pump capacity

Overflow losses

Overflow losses equal as assumed?

No

Main Dimensions

Yes

Pumps and pipelines
Pump capacities

- 10000 m³ in 90 min = 1.85 m³/s including pores or 1.85x0.6 = 1.11 m³/s excluding pores
- Assume $C_{vd} = 0.2 \rightarrow$ capacity $Q = 1.11/0.25 = 5.55$ m³/s or per suction tube 2.8 m³/s
- Critical velocity for course sand is 5 m/s, so pipe diameter is 0.85 m → 0.85 m
- In coarse sand and gravel there are no overflow losses to account for.
Excavation process
Calculated the required jet pressure

- Sand mass follows from production

\[Q_{sand} = (1 - n) Q_{dredged} \]
\[M_{sand} = Q_{sand} \rho_{sand} = (1 - n) Q_{dredged} \rho_{sand} \]

- Momentum follows from:

\[M_{sand} = \alpha \cdot I \]

With \(\alpha = 0.1 \)

\[\alpha \cdot I = \alpha \rho_w \cdot Q_{jet} u = \alpha \rho_w \cdot Q \frac{2p}{\rho_w} = \alpha \sqrt{2\rho_w} \frac{P_{\text{power}}}{\sqrt{P_{\text{pressure}}}} \]
Relation between Q_{mix}, Q_{jet} and $Q_{erosion}$
Pumps and pipelines

Determine jet capacity and pressure

Submerged pump required?

No

Yes

Depth of submerged pump

Determine headlosses and power(s)

Choose pump(s)
Submerged pump required?

\[
\rho_{\text{water}} g H + Vac = \rho_{\text{mixture}} g h_z + \xi \frac{1}{2} \rho_{\text{mixture}} v^2 = \rho_{\text{mixture}} g (H - k) + \xi \frac{1}{2} \rho_{\text{mixture}} v^2
\]
Hydraulic transport

• From seabed into the hopper
• From hopper to the shore
 • Mostly empirical relations (Matousek)

• For gravel dredgers this is mostly be mechanically
Pump characteristics
Propulsion

- For dredging & sailing
- Bow trust power
- Total Installed
- Power balance

General layout
Propulsion power

\[y = 0.4641x - 510.11 \]

\[R^2 = 0.8741 \]
Bow trust power

![Graph showing the relationship between bow trust power and propulsion power during trailing.](image)

The equation for the line of best fit is:

\[y = 0.1758x - 19.495 \]

with a coefficient of determination, \(R^2 = 0.8036 \).
General Arrangement
General Arrangement of gravel dredger
Simple general arrangement

L_{ship} = 165 m
L_{hopper} = 62 m
B_{ship} = 33 m
B_{hopper} = 25 m
H_{ship} = 14.7 m
H_{hopper} = 13.2 m

See figure B7.1
The Cutter Suction Dredger
Example 2

Design a cutter dredger that can dredge 5 Mm3 rock with a unconfined compressive strength of 5 MPa. The tensile strength is 1 MPa.

The dredgers have to work 168 hrs a week.

Yearly overhaul 4 weeks
Christmas leave 1 week
General delays 10%
Dredging delays 20
SPE~qu
Required cut production

Available hours \((52-5) \times 168 = 7896\)
Non dredging hours: \(0.3 \times 7896 = 2369\)
Dredging hours \(7896 - 2369 = 5527\)
Estimated spillage 25%
Required hourly output: \(1.25 \times 5000000 / 5527 = \pm 1130 \text{ m}^3\).
\(Q_{dredged} = 1130 / 3600 = 0.314 \text{ m}^3/s\)
Time losses due to stepping, spud changes 15%
\(Q_{cut} = 0.31 / 0.85 = 0.37 \text{ m}^3/s\)
SPE = 5MJ / m³.
Required mean cutter power \(0.37 \times 5 = 1.85 \text{ MW}\)
Cutter head productions c.q. Spillage

• The rotational speed of the cutter head causes spillage.

• The productivity c.q. spillage depends on the ratio:

• For sand the productivity is: \(P_r \approx 2.5 \frac{Q_{\text{pump}}}{\omega R_{\text{cutter}}^3} \)

• For rock the productivity is much lower
Cutter head productions c.q. Spillage

RELATIVE PRODUCTION

- Gravel 10 mm
- Gravel 15 mm
- Ladder 25 deg.
- Sand
Cutter head production process in rock or gravel
Cutter head dimensions for rock with 25 % spillage

![Graph showing cutter head dimensions and capacities for different speeds and diameters.](image)
Pump capacity and concentrations

\[Q_{\text{dredged}} = 0.314 \text{ m}^3/\text{s} \]
\[Q_{\text{mixture}} = 3.5 \text{ m}^3/\text{s} \]

\[C_{vd} = \frac{Q_{\text{sand}}}{Q_{\text{mixture}}} = \frac{Q_{\text{dredged}}}{Q_{\text{mixture}}} \left(1 - n\right) \]
Pumping distances and installed pump power

- Knowledge of hydraulic losses can be found in the lecture notes of Matousek c.q. Talmon
- Knowledge of dredge pump can be found on our website and is downloadable.
Lightweight of pontoon

\[y = 0.3485x \]

\[R^2 = 0.925 \]
Pontoon dimensions (1/ 2)
Pontoon dimensions (2/2)

The graph shows the relationship between BLD (in m³) and light weight (in t). The equation of the line is:

\[y = 0.4664x \]

with an R² value of 0.9597.
Backhoe dredger

[Image of a backhoe dredger at a port]
Example 3

- A backhoe dredger have to dredge 500 m3/in fine sand with a SPE of 0.7MJ/m3.
- Calculated the Bucket size and cylinder forces
Fill Degree & Bulk factor

<table>
<thead>
<tr>
<th>Soil type</th>
<th>Filling degree</th>
<th>Bulking factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft clay</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Hard clay</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>Sand & Gravel</td>
<td>1</td>
<td>1.05</td>
</tr>
<tr>
<td>Rock; well blasted</td>
<td>0.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Rock, unblasted</td>
<td>0.5</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Dredge Cycle

• Cycle times of the bucket depends on the dredging depth and soil type, but are in the order between 20 and 40 seconds.
• The cycle consists of:
 • Digging
 • Lifting and swinging
 • Dumping
 • Swinging and lowering
 • Positioning.
Crane weight versus bucket size for soft soil

\[y = -7 \times 10^{-6} x^2 + 0.0494x + 1.5486 \]

\[R^2 = 0.9778 \]
Required power

Liebherr Excavators

Power [kW]

Crane weight [tons]

\[y = 4.4679x \]

\[R^2 = 0.9936 \]
Relation for existing dredgers

![Graph showing the relation between bucket size and installed power for existing dredgers. The graph includes a note for rock buckets.](image-url)
Light weight pontoon

![Graph showing relationship between total installed power (kW) and light weight (t). The graph includes data points plotted on a linear scale.](image)
Pontoon volume

\[y = 0.4713x \]

\[R^2 = 0.6122 \]
Ships numbers for BHD

![Graph showing L/B and B/t values vs. light weight (t)]
Simple Plan
Newer ideas can be discussed
The shallow draught TSHD