Powered by Fullxml

2 Layer Model
3 Layer Model + Download Excel Workbook
Experimental Data
Flow Regimes
Publications Slurry Transport
Slurry Transport: Fundamentals, A Historical Overview & The DHLLDV Framework.
Standard Graphs


©Dr.ir. S.A. Miedema


©Dr.ir. S.A. Miedema

 Powered by

Our site is powered by Fullxml portal and content management system based on XML/XSL.

  > Publications by other authors

1. Abulnaga, B. E. (2002). Slurry Systems Handbook. USA: McGraw Hill.
2. Babcock, H. A. (1970). The sliding bed flow regime. Hydrotransport 1 (pp. H1-1 - H1-16). Bedford, England: BHRA.
3. Bain, A. G., & Bonnington, S. T. (1970). The hydraulic transport of solids by pipeline. Pergamon Press.
4. Berg, C. H. (1998). Pipelines as Transportation Systems. Kinderdijk, the Netherlands: European Mining Course Proceedings, IHC-MTI.
5. Berman, V. P. (1994). Gidro i aerodinamiceskie osnovy rascota truboprovodnych sistem gidrokontejnernogo i vysokonapornogo pnevmaticeskogo transporta. Lugansk: East Ukrainian State University.
6. Blatch, N. S. (1906). Discussion of Works for the purification of the water supply of Washington D.C. Transactions ASCE 57., 400-409.
7. Blythe, C., & Czarnotta, Z. (1995). Determination of hydraulic gradient for sand slurries. 8th International Freight Pipeline Society Symposium, (pp. 125-130). Pittsburg, USA.
8. Bonneville, R. (1963). essais de synthese des lois debut d'entrainment des sediment sous l'action d'un courant en regime uniform. Chatou: Bulletin Du CREC, No. 5.
9. Boothroyde, J., Jacobs, B. E., & Jenkins, P. (1979). Coarse particle hydraulic transport. Hydrotransport 6: 6th International Conference on the Hydraulic Transport of Solids in Pipes. (p. Paper E1). BHRA.
10. Brownlie, W. (1981). Compilation of alluvial channel data: laboratory and field, Technical Report KH-R-43B. Pasadena, California, USA: California Institute of Technology.
11. Buffington, J. M. (1999). The legend of A.F. Shields. Journal of Hydraulic Engineering, 125, 376–387.
12. Buffington, J. M., & Montgomery, D. R. (1997). A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resources Research, 33, 1993-2029.
13. Camenen, B., & Larson, M. (2013). Accuracy of Equivalent Roughness Height Formulas in Practical Applications. Journal of Hydraulic Engineering., 331-335.
14. Camenen, B., Bayram, A. M., & Larson, M. (2006). Equivalent roughness height for plane bed under steady flow. Journal of Hydraulic Engineering, 1146-1158.
15. Chin, C. O., & Chiew, Y. M. (1993). Effect of bed surface structure on spherical particle stability. Journal of Waterway, Port, Coastal and Ocean Engineering, 119(3), 231–242.
16. Clift, R., Wilson, K. C., Addie, G. R., & Carstens, M. R. (1982). A mechanistically based method for scaling pipeline tests for settling slurries. Hydrotransport 8 (pp. 91-101). Cranfield, UK.: BHRA Liquid Engineering.
17. Clift, R., Wilson, K., Addie, G., & Carstens, M. (1982). A mechanistically based method for scaling pipeline tests for settling slurries. Hydrotransport 8 (pp. 91-101). Cranfield, UK.: BHRA.
18. Colebrook, C. F., & White, C. M. (1937). Experiments with Liquid Friction in Roughened Pipes. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 161 (906). (pp. 367-381). London: Royal Society of London.
19. Coleman, N. L. (1967). A theoretical and experimental study of drag and lift forces acting on a sphere resting on a hypothetical stream bed. International Association for Hydraulic Research,12th Congress, 3, pp. 185-192.
20. Condolios, E., & Chapus, E. E. (1963A). Transporting Solid Materials in Pipelines. Journal of Chemical Engineering, 93-98.
21. Condolios, E., & Chapus, E. E. (1963B). Designing Solids Handling Pipelines Part II. Journal of Chemical Engineering, 131-138.
22. Dey, S. (1999). Sediment threshold. Applied Mathematical Modelling, 399-417.
23. DHL. (1972). Systematic Investigation of Two Dimensional and Three Dimensional Scour, Report M648/M863. Delft, Netherlands: Delft Hydraulics Laboratory.
24. Doron, P., & Barnea, D. (1993). A three layer model for solid liquid flow in horizontal pipes. International Journal of Multiphase Flow, Vol. 19, No.6., 1029-1043.
25. Doron, P., & Barnea, D. (1995). Pressure drop and limit deposit velocity for solid liquid flow in pipes. Chemical Engineering Science, Vol. 50, No. 10., 1595-1604.
26. Doron, P., & Barnea, D. (1996). Flow pattern maps for solid liquid flow in pipes. International Journal of Multiphase Flow, Vol. 22, No. 2., 273-283.
27. Doron, P., Granica, D., & Barnea, D. (1987). Slurry flow in horizontal pipes, experimental and modeling. International Journal of Multiphase Flow, Vol. 13, No. 4., 535-547.
28. Doron, P., Simkhis, M., & Barnea, D. (1997). Flow of solid liquid mixtures in inclined pipes. International Journal of Multiphase Flow, Vol. 23, No. 2., 313-323.
29. Durand, R. (1953). Basic Relationships of the Transportation of Solids in Pipes - Experimental Research. Proceedings of the International Association of Hydraulic Research. Minneapolis.
30. Durand, R., & Condolios, E. (1952). Etude experimentale du refoulement des materieaux en conduites en particulier des produits de dragage et des schlamms. Deuxiemes Journees de l'Hydraulique., 27-55.
31. Egiazarof, I. (1965). Calculation of non-uniform sediment concentrations. Journal of the Hydraulic Division, ASCE, 91(HY4), 225-247.
32. Einstein, A. (1905). On the motion of small particles suspended in liquids at rest required by the molecular kinetic theory of heat. Annalen der Physik Vol.17., 549-560.
33. Engelund, F., & Hansen, E. (1967). A monograph on sediment transport to alluvial streams. Copenhagen: Technik Vorlag.
34. Fenton, J. D., & Abbott, J. E. (1977). Initial movement of grains on a stream bed: The effect of relative protrusion. Proceedings of Royal Society, 352(A), pp. 523–537. London.
35. Fowkes, R. S., & Wancheck, G. A. (1969). Materials handling research: Hydraulic transportation of coarse solids. U.S. Department of the interior, Bureau of Mines, Report 7283.
36. Fuhrboter, A. (1961). Über die Förderung von Sand-Wasser-Gemischen in Rohrleitungen. Mitteilungen des Franzius-Instituts, H. 19.
37. Garcia, M. H. (2008). Sedimentation Engineering (Vol. 110). ASCE Manuals & Reports on Engineering Practise No. 110.
38. Gibert, R. (1960). Transport hydraulique et refoulement des mixtures en conduites. Annales des Ponts et Chausees., 130(3), 307-74, 130(4), 437-94.
39. Gillies, R. G. (1993). Pipeline flow of coarse particles, PhD Thesis. Saskatoon: University of Saskatchewan.
40. Gillies, R. G., Shook, C. A., & Xu, J. (2004). Modelling heterogeneous slurry flows at high velocities. The Canadian Journal of Chemical Engineering, Vol. 82., 1060-1065.
41. Graf, W. H., & Pazis, G. C. (1977). Les phenomenes de deposition et d’erosion dans un canal alluvionnaire. Journal of Hydraulic Research, 15, 151-165.
42. Graf, W. H., Robinson, M. P., & Yucel, O. (1970). Critical velocity for solid liquid mixtures. Bethlehem, Pensylvania, USA.: Fritz Laboratory Reports, Paper 386. Lehigh University.
43. Grant, W. D., & Madsen, O. S. (1982). Movable bed roughness in unsteady oscillatory flow. Journal Geophysics Resources, 469-481.
44. Grunsven, F. v. (2012). Measuring the slip factor for various slurry flows using temperature calibrated Electrical Resistance Tomography. Delft, The Netherlands.: Delft University of Technology.
45. Hjulstrøm, F. (1935). Studies of the morphological activity of rivers as illustrated by the River Fyris. Bulletin of the Geological Institute, 25, 221–527. University of Uppsala.
46. Hjulstrøm, F. (1939). Transportation of debris by moving water, in Trask, P.D., ed., Recent Marine Sediments. A Symposium: Tulsa, Oklahoma, American Association of Petroleum Geologists, (pp. 5-31). Tulsa, Oklahoma.
47. Howard, G. W. (1939). Transportation of Sand and Gravel in a 4 Inch Pipe. Transactions ASCE Vol. 104., No. 2039., 1334-1348.
48. Ikeda, S. (1982). Incipient motion of sand particles on side slopes. Journal of the Hydraulic division, ASCE, 108(No. HY1).
49. Iwagaki, Y. (1956). Fundamental study on critical tractive force. Transactions of the Japanese Society of Civil Engineers, Vol. 41, 1-21.
50. Jufin, A. P., & Lopatin, N. A. (1966). O projekte TUiN na gidrotransport zernistych materialov po stalnym truboprovodam. Gidrotechniceskoe Strojitelstvo, 9., 49-52.
51. Julien, P. (1995). Erosion and sedimentation. Cambridge University Press.
52. Karasik, U. A. (1973). Hydraulische Forderung von feinkorniqen Suspensionen (in russisch). Gidromechanika, S.BO ff, Vol. 25. Kiew.
53. Kazanskij, I. (1978). Scale-up effects in hydraulic transport theory and practice. Hydrotransport 5 (pp. B3: 47-74). Cranfield, UK: BHRA Liquid Engineering.
54. Kazanskij, I. (1980). Vergleich verschiedener Rohrmaterialen in Bezug auf Verschleiss und Energieverbrauch beim Hydrotransport in Rohrleitungen. VDI Berichte Nr. 371, pp. 51-58.
55. King, R. P. (2002). Introduction to Practical Liquid Flow. University of Utah.: Butterworth Heineman.
56. Kril, S. I. (1990). Nopernye vzvesenesuscie potoki (pressurised slurry flows). Kiev: Naukova Dumka.
57. Kurihara, M. (1948). On the critical tractive force. Research Institute for Hydraulic Engineering, Report No. 3, Vol. 4.
58. Luckner, T. (2002). Zum Bewegungsbeginn von Sedimenten. Dissertation. Darmstadt, Germany: Technische Universitat Darmstadt.
59. Madsen, O. S., Wright, L. D., Boon, J. D., & Chrisholm, T. A. (1993). Wind stress, bed roughness and sediment suspension on the inner shelf during an extreme storm event. Continental Shelf Research 13, 1303Ð1324. .
60. Mantz, P. A. (1977). Incipient transport of fine grains and flakes by liquids—Extended Shields diagram. Journal of Hydraulic Division, ASCE, 103(6), 601-615.
61. Matousek, V. (1996). Solids Transportation in a Long Pipeline Connected with a Dredge. Terra et Aqua 62., 3-11.
62. Matousek, V. (1997). Flow Mechanism of Sand/Water Mixtures in Pipelines, PhD Thesis. Delft, Netherlands: Delft University of Technology.
63. Matousek, V. (2004). Dredge Pumps & Slurry Transport, Lecture Notes. Delft: Delft University of Technology.
64. Matousek, V., & Krupicka, J. (2009). On equivalent roughness of mobile bed at high shear stress. Journal of Hydrology & Hydromechanics, Vol. 57-3., 191-199.
65. Matousek, V., & Krupicka, J. (2010). Semi empirical formulae for upper plane bed friction. Hydrotransport 18 (pp. 95-103). BHRA.
66. Ming, G., Ruixiang, L., Ni, F., & Liqun, X. (2007). Hydraulic transport of coarse gravel. WODCON XVIII. Orlando, Florida, USA: WODA.
67. Moody, L. F. (1944). Friction Factors for Pipe Flow. Transactions of the ASME 66 (8)., 671-684.
68. Morsi, S., & Alexander, A. (1972). An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, Vol. 55, 193-208.
69. Newitt, D. M., Richardson, M. C., Abbott, M., & Turtle, R. B. (1955). Hydraulic conveying of solids in horizontal pipes. Transactions of the Institution of Chemical Engineers Vo.l 33., 93-110.
70. Nezu, I., & Nakagawa, H. (1993). Turbulence in Open Channel Flows. A. A. Balkema.
71. Ni, F., Zhao, L., Matousek, V., Vlasblom, W. J., & Zwartbol, A. (2004). Two phase flow of highly concentrated slurry in a pipeline. Journal of Hydrodynamics, Series B, Vol. 16, No. 3., 325-331.
72. Ni, F., Zhao, L., Xu, L., & Vlasblom, W. J. (2008). A model calculation for flow resistance in the hydraulic transport of sand. WODCON 18 (pp. 1377-1384). Orlando, Florida, USA: WODA.
73. Nielsen, P. (1981). Dynamics and geometry of wave generated ripples. Journal of Geophysics Research, Vol. 86., 6467-6472.
74. Nikuradse, J. (1933, July/August). Stromungsgesetze in rauen Rohren. VDI Forschungsheft 361, Beilage zo "Forschung auf dem Gebiete des Ingenieurwesens", Ausgabe B, Band 4.
75. O'Brien, M. P., & Folsom, R. G. (1937). The transportation of sand in pipelines. Volume 3,Nummer 7 van University of California publications in engineering.
76. Paphitis, D. (2001). Sediment movement under unidirectional flows: an assesment of empirical threshold curves. Coastal Engineering, 227-245.
77. Postma, H. (1967). Sediment transport and sedimentation in the estuarine environment. Estuaries, AAAS, Washington D.C. Publ. 83., 158-179.
78. Prandl, L. (1925). Z. angew. Math. Mech. 5 (1), 136-139.
79. Raudviki, A. J. (1990). Loose Boundary Hydraulics. University of Auckland: Pergamon Press.
80. Ravelet, F., Bakir, F., Khelladi, S., & Rey, R. (2012). Experimental study of hydraulic transport of large particles in horizontal pipes. Experimental Thermal and Liquid Science, 13.
81. Reichardt, H. (1951). Vollstandige Darstellung der Turbulenten Geswindigkeitsverteilung in Glatten Leitungen. Zum Angew. Math. Mech., 3(7), 208-219.
82. Richardson, J. F., & Zaki, W. N. (1954). Sedimentation & Liquidization: Part I. Transactions of the Institution of Chemical Engineering 32, 35-53.
83. Rijn, L. v. (1984). Sediment transport: Part I: Bed load transport. Journal of Hydraulic Engineering, Vol. 110(10), 1431-1456.
84. Rijn, L. v. (1993). Principles of Sediment Transport, Part 1. . Blokzijl: Aqua Publications.
85. Rowe, P. N. (1987). A convinient empirical equation for estimation of the Richardson-Zaki exponent. Chemical Engineering Science Vol. 42, no. 11, 2795-2796.
86. Saffman, P. G. (1965). The lift on small sphere in a slow shear low. Journal of Fluid Mechanics, 22, 385-400.
87. Schaan, J., & Shook, C. A. (2000). Anomalous friction in slurry flows. Canadian Journal of Chemical Engineering, Vol. 78., 726-730.
88. Scheurel, H. G. (1985). Rohrverschleiss beim hydraulischen feststoffentransport. Karlsruhe: Universitat Karlsruhe.
89. Schlichting, H. (1968). Boundary layer theory. 6th ed. New York: McGraw-Hill.
90. Shields, A. (1936). Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung. Mitteilung der Preussischen Versuchsanstalt fur Wasserbau und Schiffbau, Heft 26, Berlin. Belin.
91. Shook, C., & Roco, M. (1991). Slurry Flow, Principles & Practice. Boston: Butterworth Heineman.
92. Silin, M. O., Kobernik, S. G., & Asaulenko, I. A. (1958). Druckhohenverluste von Wasser und Wasser-Boden-Gemischen in Rohrleitungen grossen Durchmessers. Ukrain: Dopovidi Akad. Nauk. Ukrain RSR.
93. Silin, N. A., & Kobernik, S. G. (1962). Rezimy raboty zemlijesosnych snarjadov, Kijev.
94. Simons, D. (1957). Theory and design of stable channels in alluvial material. PhD thesis: Colorado State University.
95. Sobota, J., & Kril, S. I. (1992). Liquid and solid velocity during mixture flow. Proceedings 10th International Colloquium Massenguttransport durch Rohrleitungen., (p. K). Meschede, Germany.
96. Soleil, G., & Ballade, P. (1952). Le transport hydraulique des materiaux dans les travaux publics, observations des resultats d'essais en grandeur nature. Deuxiemes Journees de l'Hydraulique, 9-26.
97. Soulsby, R., & Whitehouse, R. (1997). Threshold of sediment motion in coastal environment. Proceedings Pacific Coasts and Ports. (pp. 149-154). Christchurch, New Zealand: University of Canterbury.
98. Stevenson, P., Cabrejos, F. J., & Thorpe, R. B. (2002). Incipient motion of particles on a bed of like particles in hydraulic and pneumatic conveying. Fourth World Congress of Particle Technology, Sydney, 21st–25th July (paper 400). Sydney.
99. Stevenson, P., Thorpe, R. B., & Davidson, J. F. (2002). Incipient motion of a small particle in the viscous boundary-layer at a pipe wall. Chemical Engineering Science, 57, 4505–4520.
100. Sundborg, A. (1956). The River Klarålven: Chapter 2. The morphological activity of flowing water erosion of the stream bed. Geografiska Annaler, 38, 165-221.
101. Swamee, P. K. (1993). Critical depth equations for irrigation canals. Journal of Irrigation and Drainage Engineering, ASCE., 400-409.
102. Swamee, S. E., & Jain, K. A. (1976). Explicit equations for pipe-flow problems. Journal of the Hydraulics Division (ASCE) 102 (5)., 657-664.
103. Talmon, A. (2011). Hydraulic Resistance of Sand-Water Mixture Flow in Vertical Pipes. T&S, Transport and Sedimentation of Solid Particles (pp. 137-147). Wroclaw, Poland: T&S.
104. Talmon, A. (2013). Analytical model for pipe wall friction of pseudo homogeneous sand slurries. Particulate Science & technology: An International Journal, 264-270.
105. Televantos, Y., Shook, C. A., Carleton, A., & Street, M. (1979). Flow of slurries of coarse particles at high solids concentrations. Canadian Journal of Chemical Engineering, Vol. 57., 255-262.
106. Thomas, A. (1976). SCALE-UP METHODS FOR PIPELINE TRANSPORT OF SLURRIES. International Journal of Mineral Processing, Vol. 3., 51-69.
107. Thomas, D. G. (1965). Transport characteristics of suspensions: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. Journal Of Colloidal Sciences, Vol. 20., 267-277.
108. Turian, R. M., & Yuan, T. F. (1977). Flow of slurries in pipelines. AIChE Journal, Vol. 23., 232-243.
109. Turner, T. (1996). Fundamentals of Hydraulic Dredging. New York: ASCE.
110. Turton, R., & Levenspiel, O. (1986). A short note on the drag correlation for spheres. Powder technology Vol. 47, 83-85.
111. Vanoni, V. A. (1975). Sedimentation Engineering: American Society of Civil Engineers, Manuals and Reports on Engineering Practice. No. 54. P.745.
112. Vlasak, P. (2008). Laminar, transitional and turbulent flow of fine grained slurries in pipelines. Prague.: Czech Technical University in Prague, Fakulty of Civil Engineering.
113. Vlasak, P., Kysela, B., & Chara, Z. (2012). FLOW STRUCTURE OF COARSE-GRAINED SLURRY IN A HORIZONTAL PIPE. Journal of Hydrology & Hydromechanics, Vol. 60., 115-124.
114. Wasp, E. J. (1963). Cross country coal pipeline hydraulics. Pipeline News., 20-28.
115. Wasp, E. J., Kenny, J. P., & Gandhi, R. L. (1977). Solid liquid flow slurry pipeline transportation. Transactions Technical Publications.
116. Wasp, E. J., Kenny, J. P., Aude, T. C., Seiter, R. H., & Jacques, R. B. (1970). Deposition velocities transition velocities and spatial distribution of solids in slurry pipelines. Hydro Transport 1, paper H42. (pp. 53-76). Coventry: BHRA Liquid Engineering.
117. White, C. M. (1940). The equilibrium of grains on the bed of a stream. Proceedings Royal Society of London, A174, pp. 322-338.
118. Whitlock, L., Wilson, K. C., & Sellgren, A. (2004). Effect of near-wall lift on frictional characteristics of sand slurries. Hydrotransport 16 (pp. 443-454). Cranfield, UK.: BHR Group.
119. Wiberg, P. L., & Smith, J. D. (1987A). Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resources Research, 23(8), 1471–1480.
120. Wiberg, P., & Smith, J. (1987B). Initial motion of coarse sediment in streams of high gradient. Proceedings of the Corvallis Symposium. IAHS Publication No. 165.
121. Wiedenroth, W. (1967). Untersuchungen uber die forderung von sand wasser gemischen durch rohrleitungen und kreiselpumpen. Hannover: PhD Thesis, Technische Hochschule Hannover.
122. Wikramanayake, P. N., & Madsen, O. S. (1991). Calculation of movable bed friction factors. Vicksburg, Mississippi.: Tech. Rep. DACW-39-88-K-0047, 105 pp., Coastal Eng. Res. Cent.,.
123. Wilson, K. C. (1988). Evaluation of interfacial friction for pipeline transport models. Hydrotransport 11 (p. B4). BHRA.
124. Wilson, K. C., Addie, G. R., & Clift, R. (1992). Slurry Transport using Centrifugal Pumps. New York: Elsevier Applied Sciences.
125. Wilson, K. C., Addie, G. R., Clift, R., & Sellgren, A. (1997). Slurry Transport using Centrifugal Pumps. Glasgow, UK.: Chapman & Hall, Blackie Academic & Professional.
126. Wilson, K. C., Clift, R., Addie, G. R., & Maffet, J. (1990). Effect of Broad Particle Grading on Slurry Stratification Ratio and Scale-up. Powder Technology, 61., 165 - 172.
127. Wilson, W. E. (1942). Mechanics of flow with non colloidal inert solids. Transactions ASCE Vol. 107., 1576-1594.
128. Worster, R. C., & Denny, D. F. (1955). Hydraulic transport of solid materials in pipelines. Institution of Mechanical Engineers (London), 563-586.
129. Wu, W., & Wang, S. (2006). Formulas for sediment porosity and settling velocity. Journal of Hydraulic Engineering, 132(8), 858-862.
130. Yagi, T., Okude, T., Miyazaki, S., & Koreishi, A. (1972). An Analysis of the Hydraulic Transport of Solids in Horizontal Pipes. Nagase, Yokosuka, Japan.: Report of the Port & Harbour Research Institute, Vol. 11, No. 3.
131. Yalin, M. S., & Karahan, E. (1979). Inception of sediment transport. ASCE Journal of the Hydraulic Division, 105, 1433–1443.
132. Zandi, I. (1971). Hydraulic transport of bulky materials. In I. Zandi, Advances in Solid–Liquid Flow in Pipes and its Applications. (pp. 1-38). Oxford: Pergamon Pres.
133. Zandi, I., & Govatos, G. (1967). Heterogeneous flow of solids in pipelines. Proc. ACSE, J. Hydraul. Div.,, 93(HY3)., 145-159.
134. Zanke, U. C. (1977). Berechnung der Sinkgeschwindigkeiten von Sedimenten. Hannover, Germany: Mitteilungen Des Francius Instituts for Wasserbau, Heft 46, seite 243, Technical University Hannover.
135. Zanke, U. C. (2001). Zum Einfluss der Turbulenz auf den Beginn der Sedimentbewegung. Darmstadt, Germany: Mitteilungen des Instituts fur Wasserbau und Wasserwirtschaft der TU Darmstadt, Heft 120.
136. Zanke, U. C. (2003). On the influence of turbulence on the initiation of sediment motion. International Journal of Sediment Research, 18(1), 17–31.

SAM-Consult (Top-Right)

 Website News
We noticed that many visitors like to view and/or download the many papers we show on this site. We will try to put more interesting publications on this website whenever we encounter it.


 Login | Home | Resources | Site map | Traffic | 56 active visitors 

Fullxml powered website © fullxml.org
Last updated
Copyright 2001- © Dr.ir. S.A. Miedema - all rights reserved

Copyright © Dr.ir. S.A. Miedema

Send email to WebMaster with questions or comments about this website.